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Future energy scaling of high-energy chirped-pulse amplification systems will benefit 

from the capability to coherently tile diffraction gratings into larger apertures. Design and 

operation of a novel, accurate alignment diagnostics for coherently tiled diffraction 

gratings is required for successful implementation of this technique. An invariant 

diffraction direction and phase for special moves of a diffraction grating is discussed, 

allowing simplification in the design of the coherently tiled grating diagnostics. An 

analytical proof of the existence of a unique diffraction grating eigenvector for 

translational and rotational motion which conserves the diffraction direction and 

diffracted wave phase is presented.

OCIS codes: (050.1950) Diffraction gratings; (050.1960) Diffraction theory; (320.7090) 

Ultrafast lasers.
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Fast ignition1 for high-yield inertial confinement fusion (ICF) represents an 

attractive route to enhancement of conventional ICF driven by nanosecond lasers. Recent 

experiments2 suggest that the delivery of energy in excess of 100 kJ in 10-20 ps pulses to 

the compressed target will be needed for efficient full-scale fast ignition. Production of 

energy on this scale utilizing a chirped-pulse amplification (CPA) laser system represents 

a formidable challenge. This is particularly the case due to limited apertures and energy 

handling capability of diffraction gratings in the pulse compressors of such laser 

systems.3 Coherent tiling of gratings for high energy laser pulse compression has been 

proposed4 and recently demonstrated5 as a route to overcome the limited energy handling 

of diffraction gratings. Remaining challenges to the full adoption of this technique 

include the design and operation of coherently tiled grating alignment diagnostics and the 

interpretation of the misaligned grating diagnostics signatures. In this Letter we report the

existence of a unique eigenvector for diffraction grating translational and rotational 

motion. Grating diffraction direction is unaffected by the grating translation in the 

direction parallel to, or rotation around the axis parallel to this grating eigenvector, 

unique to a selected diffraction order. Multiple practical design features and capabilities 

of the coherently tiled grating diagnostics will be enabled by taking advantage of the 

existence of diffraction eigenvectors.

Maintaining alignment of the multiple gratings presents a significant 

technological challenge in any implementation of the coherent grating tiling concept. Of 

the six possible rigid-body motions (three translational and three rotational) of one 

grating relative to another, only one, translation along the grooves, obviously does not 

affect the phasing of the gratings. As pointed out earlier,5 since there are only three 
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possible errors in the wavefront: tip, tilt, and path length, the effect on phasing of the five 

remaining rigid-body motions must be coupled. This may lead to a significant reduction 

in the complexity of controls needed to maintain grating alignment since one motion may 

be used to compensate for errors in another.

Fig. 1 shows two gratings with groove spacing d displaced from each other in a 

direction perpendicular to the grooves. The magnitude of the displacement of some 

corresponding point on the grooves of each grating is characterized by p, the amount of 

piston motion, and t, the amount of translation in the plane of the grating surface. A plane 

wave is incident on the gratings with a propagation direction Θ from the grating normal. 

As a result of the translation, the optical path difference (OPD) for the light striking 

grating 2 compared to the path length to grating 1 is p.cos(Θ)-t.sin(Θ). Identical analysis 

can be done to find the OPD for the diffracted wave. Using the sign convention that a 

diffracted angle on the opposite side of the normal from a positive incidence angle is 

positive and denoting the diffracted angle by Θ’, the total OPD due to the translation is

( )[ ] ( ) ( )[ ]ΘΘtΘΘpOPD ′−−′+= sinsincos)cos( . (1)

The diffraction from a pair of gratings displaced with respect to each other is identical to 

two perfectly aligned gratings when the OPD equals an integral number of waves. 

Without loss of generality we can consider alignment to be achieved when OPD=0. 

Adding an integral number of waves corresponds to shifting the second grating by an 

integral number of grooves. The gratings will remain phased provided the translation 

direction satisfies
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Eq. (2) shows that the motion that results in zero OPD is a translation perpendicular to 

the bisector of the input and diffracted wave vectors. Thus the translational eigenvector 

for a diffraction grating is parallel to the bisector of the input and diffracted wave vectors.

As a consequence of this result and the invariance of the system to translation along the 

grating grooves, only one of the three rigid-body translations contributes to the OPD at a 

single wavelength. Any translational motion which is not parallel to either of the motions 

that leave the OPD invariant can be used to control the OPD in a phased grating system. 

In practice, the piston, p, would seem to be the easiest variable to control.

We next consider the rotational eigenmotion of the diffraction grating. Rotation of 

the grating leads to conical diffraction. The vector form of the grating equation is used in 

this analysis6 for treatment of general conical diffraction. After preliminaries to establish 

notations, the existence of the rotational eigenmotion is demonstrated. It is shown that the 

rotational eigenvector is identical to the translational eigenvector defined by Eq. (2), i. e. 

parallel to the bisector of the input and diffracted wave vectors. The grating equation in 

vector form is6

GNS'S
d

m λ
=×− )( . (6)

The notation is explained in Fig. 2. N and G are unit vectors fixed to the grating and in 

the direction of the outward normal and along the grooves, respectively. The unit vector 

in the plane of the grating and normal to the grooves, GNP ×= , is also needed for the 

analysis. The vectors S and S’ are the unit vectors in the direction of the incident and 

diffracted waves, respectively. Several other mutually orthogonal sets of unit vectors will 

be used in the subsequent development. Let us define Λ as the unit vector parallel to the 

bisector of the angle between the incident and diffracted wave vectors, i.e. the grating 
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translation eigenvector. The grating is rotated by an angle Φ about the rotation axis

parallel to Λ. A coordinate system independent of Φ which coincides with )( GN,P,

when Φ=0 is denoted by )( ZY,X, . The incident wave direction does not rotate and is in 

the )( YX, plane. At Φ=0, the diffracted wave direction is also the )( YX, plane. It is be 

helpful to define a coordinate system (X’,Y’,Z) which is generated from the (X,Y,Z)

system by rotating about the Z axis to bring the Y axis into the rotation axis. It can then 

be seen that the unit vectors in this system are (X’, Y’, Z) where

( )S'S
SSY'

⋅−
−

=
12

' and ZY'X' ×= . (7)

Since G = Z when Φ = 0, it is readily seen that 

( ) ( )ΦΦ sincos X'ZG += . (8a)

It can be also shown that
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With the notation established, the proof that rotation about the bisector of the incident 

and diffracted wave directions leaves the diffracted wave direction unchanged is 

straightforward. Taking the scalar product of Eq. (6) with P gives

( )( ) 0=−⋅ ΦS'SG . (9)

From the definition of Y’ and Eq. (8a), it can also be seen that

( )( ) 00 =−⋅ S'SG , (10)

and therefore

( ) ( )( ) 00 =−⋅ S'S'G Φ . (11).
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Next, take the scalar product of Eq. (6) with G to get

( )( )
d

mΦ λ
=−⋅ S'SP . (12)

From Eqs.  (6), (7), and (8b) we can also find

( )( )
d

m λ
=−⋅ 0S'SG , (13)

and therefore

( ) ( )( ) 00 =−⋅ S'P Φ . (14)

Now according to Eqs. (11) and (14), the two unit vectors S’(Φ ) and S’(0) have identical 

components in each of two mutually orthogonal directions. This requires that the two unit 

vectors are equal. Thus the invariance is proven. Of the three independent rigid-body 

rotations, one, rotation about the bisector of the incident and diffracted rays, does not 

affect the diffracted wavefront. Therefore, similar to the situation in the previous section, 

any two rotations not parallel to this eigenmotion need to be controlled in order to phase 

the gratings at one wavelength. Experimental mounting a 600-mm-1 grating and the use of 

a 543-nm laser beam confirmed the existence of the grating rotation eigenvector.

It has been shown above that the coupling of degrees of freedom of the grating 

motion may be expressed very intuitively in terms of two ‘eigenmotions’ of the relative 

positions of the gratings that leave the diffracted waves phased. The two eigenmotions 

(translational and rotational) share the identical eigenvector, which is defined by the 

bisector of the incident and diffracted wave vectors. Only the three degrees of freedom 

orthogonal to these eigenmotions must be controlled to maintain coherence between the 

gratings for a monochromatic beam. However, these eigenmotions depend both on the 

wavelength and the incidence angle of the incoming light and this has significant 
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implications for the application of phased gratings to CPA systems. The wavelength 

dependence means that there is no one eigenmotion that will maintain the phasing over 

the entire bandwidth of the chirped pulse. The dependence on angle of incidence implies 

that any diagnostic that utilizes an alignment laser must operate at the same angle of 

incidence as the high-energy chirped-pulse beam. If the diagnostic beam does not share 

the grating eigenvector with the use beam, the motions for which the diagnostic is not 

sensitive will affect the use beam. The effect of the spectral bandwidth, diagnostic beam 

direction, and differences in groove density on grating tiling will be the subject of the 

forthcoming analysis.

This work was performed under the auspices of the U. S. Department of Energy by the 

University of California, Lawrence Livermore National Laboratory under Contract No. 

W-7405-Eng-48.
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Figure 1
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Figure 2
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LIST OF FIGURES

Figure 1. OPD for a wave incident at an angle Θ on a set of parallel gratings 

displaced by the piston motion p and lateral motion t. The two gratings are 

assumed to have identical grating period d.

Figure 2. (a) Notation for grating conical diffraction analysis. The unit vector 

normal to the grating surface is denoted by N, while the unit vector along the 

grooves is denoted by G. The unit vector in the plane of grating and normal to the 

grooves is denoted by P. The incident and diffracted wave unit vectors are S and 

S’, respectively. The reflection vector is denoted by R. In (b) and (c) we show the 

rotation of the grating about the grating eigenvector Λ by 45° and 90°, 

respectively.
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